
A COMPUTATIONAL APPROACH TO CHEMICAL STRUCTURE

MATCHING BASED ON CARTESIAN ATOMIC COORDINATES

by Mykola Zotko

Master Thesis

Supervised by: Prof. Dr. Max C. Holthausen

Institute of Inorganic and Analytic Chemistry

Goethe University Frankfurt am Main

29 July 2018

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Masterarbeit mit dem Titel

“A Computational Approach to Chemical Structure Matching Based on Cartesian

Atomic Coordinates ”

selbstständig angefertigt und mich keiner anderen Hilfsmittel als den darin angegebe-

nen bedient habe, insbesondere, dass schriftliche Entlehnungen nicht stattgefunden

haben, soweit sie in der Arbeit nicht ausdrücklich als solche mit Angabe der entspre-

chenden Schrift bezeichnet sind. Die Arbeit wurde bisher in keinem Studiengang als

Prüfungsleistung verwendet.

Frankfurt am Main, den 29. Juli 2018

Mykola Zotko

2

Acknowledgements

I would like to first say a very big thank you to my supervisor Prof. Dr. Max C. Holthausen

for the interesting research topic, the patient guidance and advice he has provided. I

am particularly grateful for the assistance given by Dr. Mathias Lein of the School of

the Chemical and Physical Sciences Victoria at the University of Wellington. I would

also like to thank all the members of the Holthausen working group who helped me

in my supervisor’s absence. I am also grateful to the scholarship received from the

Goethe University Frankfurt am Main and making it possible for me to concentrate

totally on the work on this thesis. Finally, I wish to thank my family for their support and

encouragement throughout my study.

3

Zusammenfassung

Eine chemische Reaktion ist ein Vorgang, bei dem ein Satz von Molekülen (Edukte)

in einen anderen Satz (Produkte) umgewandelt wird. Während der Reaktion ändern

Atome ihre relative Position zueinander und Bindungen werden gebildet oder gebrochen.

Die Identifizierung von strukturellen Ähnlichkeiten und die automatische Zuordnung

von Atomen ist ein nicht-triviales Problem der computational molecular sciences, wel-

ches als “atom mapping problem” bekannt ist. Aufgrund der potenziell großen Anzahl

der an Bindungstransformationen beteiligten Atome und der gegebenfalls komplexen

Stereochemie von Molekülen ist eine manuelle Durchführung des atom mappings ein

mühsamer, zeitaufwändiger und fehlerträchtiger Prozess. Es ist daher von großer Be-

deutung zuverlässige Algorithmen für das atom-atom mapping zwischen Edukt- und

Produktstrukturen zu entwickeln. Zur Lösung dieses Problems existieren bereits seit

1960 [1,2] zahlreiche Verfahren, wie beispielsweise maximal clique oder backtracking

basierte Methoden, die allerdings individuelle Schwächen und Beschränkungen auf-

weisen. Ziel dieser Masterarbeit war es, geeignete Algorithmen für atom mapping in

chemischen Reaktionen zu finden, sie zu bewerten und zu implementieren. Die drei

Hauptanforderungen an die Entwicklung von atom mapping Algorithmen sind: (i) die

Fähigkeit alle Atome zweier Strukturen einander zuzuordnen, (ii) das Erkennen von an

der Reaktion beteiligten Atomen unter Berücksichtigung der Stereochemie und (iii) die

Identifizierung einer effizienten Rechenmethode auch für moderat große Moleküle (bis

zu 100 Atome).

Wir haben zwei Algorithmen als am besten geeignet für die Lösung der oben auf-

geführten Aufgaben ausgewählt: den canonical labeling for clique approximation (CLCA)

Algorithmus und den A* atom mapping Algorithmus. Der CLCA-Algorithmus basiert auf

der extended-connectivity Methode, die mittels Primfaktorzerlegung Informationen über

die Position eines Atoms im gesamten topologischen Raum eines Moleküls kodiert. Der

A* atom mapping Algorithmus basiert auf der populären A*-Suchtechnik, wie sie auch

in der künstlichen Intelligenz verwendet wird. A* verwendet eine intelligente Heuristik,

die durch den Raum des atom mappings führt, um optimale Ergebnisse zu finden.

CLCA und A* Algorithmen sind komplementär und können in einem Programmierskript

verwendet werden. Der Hauptvorteil von CLCA ist die schnelle Identifizierung von ausge-

4

dehnten substrukturen zweier Moleküle. Das partial mapping, das mit CLCA berechnet

wird, verringert die Rechenzeit und liefert den Startpunkt für den A*-Algorithmus. Für

beide Algorithmen ist die die Stereochemie schwierig zu handhaben. Daher müssen die

möglichen Zuordnungen visuell überprüft werden.

5

Contents

1 Introduction 7

2 Theoretical background 8

2.1 The Molecular graph . 8

2.2 Molecular graph construction

from atomic coordinates . 10

3 Reaction Mapping 11

3.1 Fragment-assembly based methods . 12

3.2 Maximal-clique based methods . 13

3.3 Backtracking methods: The Ullmann algorithm 15

4 The CLCA algorithm 18

4.1 Base algorithm . 18

4.2 Extended algorithm . 24

5 The A* algorithm 30

5.1 A* outline . 30

5.2 The A* atom mapping algorithm . 31

5.2.1 Editing costs . 32

5.2.2 Algorithm workflow . 35

5.2.3 A worked example of reaction mapping 38

5.2.4 Path tracing . 40

6 Summary and Outlook 43

6

1. Introduction

Molecules with similar structures often tend to have similar properties and functions [3].

For example, the function of a newly discovered RNA molecule can be estimated by

comparing its similarity to known RNA species. [4] Molecular similarity plays an essential

role in the analysis of molecular data sets [5], query retrieval in molecular databases [6],

molecular modelling [7] and the study of reaction mechanisms [8]. Comparing similarities

of different chemical compounds and matching of corresponding atoms are very chal-

lenging tasks in molecular sciences. [9] The most common type of similarity searching

is the detection of common structural fragments or substructures that are shared by

two molecules. [10] Existing atom matching algorithms can be classified into two broad

categories: algorithms for exact matching and algorithms for approximate matching.

Exact matching algorithms require a strict bijection between the matched molecules or

at least between their substructures. Approximate matching algorithms can be applied

to any two molecules even if they have different, to some extent, structure [11], such as

conformational isomers or reactants and products in chemical reactions. A chemical re-

action is a process in which one set of molecules (reactants) is transformed into another

set (products). During the reaction, atoms change their relative positions and bonds

are formed or broken. The tracing and identification of corresponding atoms between

reactants and products is a non-trivial problem in computational molecular sciences,

well known as ”Atom Mapping Problem”. [12] Due to the potentially large number of atoms

in the reaction, the rich stereochemistry of molecules and large sets of reactions in

databases a manual curation of atom mapping is a laborious and time-consuming pro-

cess. [13] It is of great importance to have reliable algorithms to establish the atom-atom

mapping relationship between reactant and product structures. Numerous methods

have been proposed to solve this problem. [13] Popular algorithms are either based on

extended-connectivity or maximum common substructure. Most of the novel methods

are based on some kind of an optimisation procedure. Their aim is finding optimal

mappings with the minimum number of broken and formed bonds. [12] However, many

methods have weaknesses and limitations, e.g. hydrogen atoms are ignored [14] or

algorithms cannot handle stereochemistry [13]. The goal of this master thesis was to find,

evaluate and implement suitable algorithms for atom mapping in chemical reactions.

7

2. Theoretical background

2.1 The Molecular graph

Chemical structures in computer analysis are often represented as molecular or chem-

ical graphs. The properties of graphs, as well as networks in general, are studied

by graph theory. This well-established branch of mathematics has many applications

in modern computer sciences. The father of graph theory is the pioneering Swiss

mathematician Leonhard Euler (1707-1782). Graph theory is considered to have begun

in 1736 when Euler published the paper with his solution of the famous ”Seven Bridges

of Königsberg” problem. [14]

A graph is an abstract structure that consists of a set of vertices or nodes connected

by edges. It does not matter what shape or size the nodes have or how long the edges

are. The positions of the nodes do not matter as well. Hence, one graph may be drawn

in many different ways. Figure 2.1 shows an example of different representations of the

same graph.

v3

v0

v1 v2

v0

v1

v2

v3

Figure 2.1: Two forms of presentation of one graph.

Mathematically, each graph G is defined as G = (V,E), where V denotes a set of

vertices and E denotes a set of edges. If two nodes v1 and v2 are connected then

(v1, v2) ∈ E. There exist two types of graphs: directed and undirected. The edges of

a directed graph have a particular direction, indicated by an arrow. In contrast, the

edges of undirected graphs are indicated by a line and have no direction. [15] Since

chemical bonds in general have no explicit direction, undirected graphs are used for the

representation of molecules. The molecular graph is a two-dimensional representation

of a molecule, where atoms are represented as nodes (vertices) and bonds as edges.

8

A graph represents only the topology of a molecular structure, e.g. the way the atoms

are connected to each other. Hydrogen atoms are usually excluded from the graph.

Nodes and edges of a molecular graph may have associated properties. Each node

has an associated element or atomic number of the corresponding atom. Additionally,

edges may have associated bond order of corresponding bonds. [16] An example of the

molecular graph of 1,3,4-oxadiazole is shown in Figure 2.2.

A(8)

E(6)

D(7)

B(6)

C(7)

Figure 2.2: Molecular graph of 1,3,4-oxadiazole. Numbers in parentheses represent
atomic numbers.

Two molecules are equal if their molecular graphs are isomorphic and the properties

of the nodes and edges are equal to the properties of corresponding nodes and edges

respectively. Two graphs G1 and G2 are called isomorphic if there exists a bijective

(one-to-one) correspondence between the nodes of both graphs. Therefore if two nodes

in G1 a connected by an edge, then the corresponding nodes in G2 must be connected

as well.

For a pair of molecules with different sizes, the smaller molecule can be a substruc-

ture of the larger one. In this case, there exists a subgraph isomorphism between both

molecules. For example, the graph of benzene is a subgraph of toluene graph. Although

two graphs may have many common subgraphs, the largest common subgraphs are

of the most interest for comparison of chemical structures. [1,17] The largest common

subgraph between two graphs is called maximal common subgraph (MCS). Maximal

common subgraphs are divided into connected or disconnected subgraphs. In a con-

nected MCS, each node is connected to other nodes by a path through the MCS. A

disconnected MCS has two or more disconnected groups of nodes.

9

An example of connected and disconnected subgraphs is shown in Figure 2.3. [18]

Figure 2.3: Connected versus disconnected maximal common subgraphs . [18]

The comparison and enumeration of the molecular graphs are of great importance

and have a long history in computational molecular sciences. According to Akutsu et al.

the most essential problems for pattern recognition in molecular graphs are the following:

determining whether two graphs are isomorphic, determining whether one molecular

graph is a subgraph of another, finding the maximum common subgraph of two graphs,

detecting a reaction atom mapping, enumerating of stereoisomers and enumerating of

possible molecular graphs satisfying given constraints. [19]

2.2 Molecular graph construction

from atomic coordinates

Approach taken in this thesis relies on the most straightforward method for determination

of atomic connectivity in molecules, which is based on interatomic distances and atomic

covalent radii. In a first step, the distance matrix between all possible atom combinations

is created, which is of size n× n, where n is the number of atoms in the molecule. Each

element aij in the distance matrix represents the distance between atoms ai and aj in

the three-dimensional Cartesian space. Next, each interatomic distance is compared to

the sum of covalent radii [20] ri and rj of both atoms. If the distance between two atoms

is within the range d = 1.3(ri + rj), that is the sum of covalent radii plus thirty per cent,

then an edge connecting the two nodes is added to the molecular graph.

10

3. Reaction Mapping

A chemical reaction is the process of transforming reactant molecules into product

molecules by breaking or creating chemical bonds. It is essential in the present context

to have reliable methods at hand to establish the bijections between the atoms before

and after the reaction, known as reaction mapping, as manual curation of atom mapping

is time-consuming and error-prone. According to Chen et al. existing methods for

reaction mapping can be classified into three main groups: fragment-assembly based

methods, common-substructure based methods, and optimisation based methods

(Figure 3.1). [12]

Reaction mapping
methods

Optimisation
based methods

Integer linear
optimization

based methods

A*-based
methods

Graph isomorphism
based methods

Fragment-assembly
based methods

Common-substructure
based methods

Extended-connectivity
based methods

MCS isomorphism based
methods

Figure 3.1: Classification of reaction mapping methods. [12]

The common-substructure based methods are classified into the extended-connectivity

based methods [21,22] and maximal common subgraph (MCS) isomorphism based meth-

ods [23,24,25]. The latter can be classified further into maximal clique-based [26], back-

tracking [27,28,29] and dynamic programming methods [30,31]. [18] The extended-connectivity

approach is used in Canonical Labeling Click Approximation (CLCA) algorithm, which

will be presented in Chapter 4 of this work. The optimisation-based methods are clas-

sified into graph isomorphism [32,33] based methods, integer linear optimisation based

methods [34] and A*-based methods. The A*-based atom mapping algorithm will be

presented in Chapter 5 of this work.

11

3.1 Fragment-assembly based methods

The technique based on fragment-assembly was used by Lynch et al. [35,36] in their

algorithm for analysing the difference in chemical structures involved in a chemical

reaction. The first step in the fragment-assembly method is the breaking of reactants

and products down into small fragments. In the next step, the fragments of the reactants

are matched with the fragments of the products to identify the identical species on both

sides of the reaction, which are then removed in a stoichiometric fashion. Finally, the

remaining components are assembled. The structures obtained in this way identify the

overall structural changes in chemical reaction. Figure 3.2 illustrates the workflow of

the fragment-assembly based algorithm. Due to ambiguities during the fragmentation

process, it is obviously not always possible to identify the exact location of the reaction

sites in both molecules, which represents the main shortcoming of this method. [12]

Figure 3.2: Fragment-assembly based algorithm. (A) Fragmentation of molecules. (B)
Identification and removing of equal fragments on both sides of the reaction (black
circles). (C) Remaining fragments. (D) Fragment assembly to identify the overall
structural changes. [37]

12

3.2 Maximal-clique based methods

The problem of identification of maximal common substructures between two molecules

can be solved by finding the so-called maximal clique in a compatibility graph of both

structures. A clique of a graph is a subgraph, in which each node is connected to all other

nodes. Consequently, a maximal clique of a graph is the clique with the maximal number

of vertices, and graph may have multiple maximal cliques. If all edges (e1, e2, e3...) of a

graph G are represented as a set E and all vertices (v1, v2, v3...) are represented as a

set V , a compatibility graph of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a graph Gc,

in which each vertex consists of a combination of vertices from G1 and G2. For example,

if the graph G1 has the node v1 representing a carbon atom and the node v2, which

represents a carbon atom in G2, both nodes are compatible and can be mapped to each

other. Therefore the node in the compatibility graph will get a label v1v2. Two nodes v1v2

and u1u2 in the compatibility graph are adjacent if, and only if v1 is connected to u1 in

the first graph and v2 is connected to u2 in the second graph or, vice versa, if v1 is not

connected to u1 in G1 and v2 is not connected to u2 in G2. To summarise, two nodes

v1v2 and u1u2 in the compatibility graph are connected, if:

v1u1 ∈ E1 and v2u2 ∈ E2

or v1u1 /∈ E1 and v2u2 /∈ E2

13

Figure 3.3 illustrates the compatibility graph of molecular graphs of 1,3,4-oxadiazole

and 1,3,4-thiadiazole. The compatibility graph has two maximal cliques which can be

determined with special algorithms. The most popular algorithms for this task are the

Bron-Kerbosch [38] and the Carraghan-Pardalos [39] algorithms. Both methods can identify

disconnected MCS, however, most clique-detection algorithms can be modified for the

identification of connected MCS. The main shortcoming of clique-detection algorithms

is that the computing time increases exponentially with the number of nodes and edges

in the compatibility graph. [40,41]

N1 N2

C1 C2

O

(a) 1,3,4-oxidiazole

N1 N2

C1 C2

S

(b) 1,3,4-thiadiazole

N1N1 N2N2

C1C1 C2C2

N1N2 N2N1

C1C2 C2C1

(c) Compatibility graph of (a) and (b)

Figure 3.3: Molecular graphs of 1,3,4-oxidiazole (a) and 1,3,4-thiadiazole (b) and their
compatibility graph (c). Two maximal cliques, which represent two possible mappings,
are easily identified by visual inspection.

14

3.3 Backtracking methods: The Ullmann algorithm

The Ullmann algorithm [42] is one of the oldest and most widely applied algorithms [2,43,44]

for substructure search in molecular graphs. The algorithm determines subgraph

isomorphism rather than MCS. Nevertheless, it is worth mentioning because it was

the fastest algorithm at its time and it forms the basis for many subgraph isomorphism

algorithms developed later. [45] Subgraph isomorphism algorithms determine if a chemical

structure represents a substructure of a larger one. If it is the case, the algorithm

generates all possible mappings between both molecules. The workflow of the Ullmann

algorithm is illustrated using matrices. In the first step, the so-called adjacency matrices

of both structures are created (Figure 3.4).

s1 s3 s2 l1 l2 l3

l4

s1 s2 s3()s1 0 0 1
s2 0 0 1
s3 1 1 0

(a) Propane

l1 l2 l3 l4

l1 0 1 0 0
l2 1 0 1 1
l3 0 1 0 0
l4 0 1 0 0

(b) Isobutane

l1 l2 l3 l4()s1 1 1 1 1
s2 1 1 1 1
s3 0 1 0 0

(c) Initial atom mapping matrix

Figure 3.4: Molecular graphs and adjacency matrices of propane (a) and isobutane
(b). (c) Initial atom mapping matrix generated from (a) and (b). The atom s3 with two
neighbours can be mapped only to the atom l2 with three neighbours.

An adjacency matrix (a and b in Figure 3.4) is a matrix of the size n×n where n is the

number of atoms (nodes) of a chemical structure (graph). Depending on whether atoms

ai and aj are connected or not, the matrix element aij is assigned 1 or 0 respectively. In

15

the second step, an atom mapping matrix (c in Figure 3.4) of size n1 × n2 is created,

where n1 and n2 are the number of atoms of both structures. Depending on whether two

atoms ai and aj are mapped or not the corresponding matrix element is assigned 1 or 0

respectively. Mapping is accomplished in the following way: all elements of the matrix

are initially set to 1, that is, all mapping combinations are allowed. Next, the Ullmann

algorithm identifies nodes which cannot be mapped to each other. To this end, the

algorithm compares the node connectivities1 of the smaller structure (cs1, cs2, cs3...) with

the node connectivities of the larger structure (cl1, cl2 , cl3...). Two nodes si and lj cannot

be mapped if csi > clj, thus the corresponding elements in the mapping matrix are set

to zero. For example, atom s3 in propane cannot be mapped to atoms l1, l3 and l4 in

isobutane. So the atom s3 can be mapped only to the atom l2. At this stage the initial

matrix from Figure 3.4 (c) is obtained. Next, the algorithm starts to generate all possible

mapping permutations starting from the first raw of the mapping matrix (s. Figure 3.5).

1 1 1 1
1 1 1 1
0 1 0 0

1 0 0 0
1 1 1 1
0 1 0 0

1 0 0 0
1 0 0 0
0 1 0 0

 1 0 0 0
0 1 0 0
0 1 0 0

1 0 0 0
0 1 0 0
0 1 0 0

1 0 0 0
0 0 1 0
0 1 0 0

1 0 0 0
0 0 1 0
0 1 0 0

1 0 0 0
0 0 0 1
0 1 0 0

1 0 0 0
0 0 0 1
0 1 0 0

0 1 0 0
1 1 1 1
0 1 0 0

 0 0 1 0
1 1 1 1
0 1 0 0

. . .

0 0 0 1
1 1 1 1
0 1 0 0

. . .

1

1.1 1.2 1.3 1.4

2 3 4

Figure 3.5: Workflow of the Ullmann algorithm. The row under consideration is shown
in bold, mapping conflicts in red. Due to space limitations, the matrices 2, 3 and 4 are
not expanded.

1The connectivity of an atom is the sum of all elements in the corresponding row or column of the
adjacency matrix.

16

In the first step of this example, four possible combinations for a mapping of atom s1

are created. After expanding of the matrix 1, there are four possibilities for the mapping

of the atom s2. The matrix 1.1 is pruned from the search as atom l1 is already mapped

to atom s1. After expanding the remaining matrices (1.2, 1.3, 1.4) and moving to the

last row, three possible combinations are determined. After removal of one combination

where two nodes are mapped to one, the algorithm returns two possible atom mappings

for both molecules. Combination 2 will be pruned from the search because atom l2 is

already mapped to atom s3.

17

4. The CLCA algorithm

4.1 Base algorithm

The Canonical Labeling for Clique Approximation (CLCA) algorithm is an extended-

connectivity algorithm developed by Kumar et al. [46] CLCA uses prime number factor-

isation to generate canonical labels for bonds and atoms. It is an algorithm for the

approximate solution of the maximum clique problem [1], which is a typical NP-complete

problem and cannot be solved in polynomial-time1. [47] CLCA has a polynomial time

complexity, but it can identify only unambiguous atom-atom mappings. The key steps of

CLCA are summarized in Figure 4.4 later in this subchapter.

The CLCA algorithm works as follows:

(1) First, two chemical structures are converted into molecular graphs.

(2) Second, the algorithm generates a canonical label for each atom in both compounds.

The labels are assigned to corresponding nodes as properties. Canonical labels are

represented as strings, which encode the information about an atom’s location in the full

topological space of the molecule. These labels can include different atom properties (if

available), such as the atomic numbers of the atom itself and its neighbours, the sign of

charge, the absolute charge, stereochemical information, etc. In our implementation,

the atom strings are created by concatenation (merging) of an atom’s atomic number

with the atomic numbers of adjacent atoms. The latter are sorted in ascending order.

For example, the carbon atom in formaldehyde, CH2O, would be associated the string

”6118” (Figure 4.1).

O(8)

86

C(6)

6118

H1(1)

16

H2(1)

16

Figure 4.1: Creating of atom strings from atomic numbers (in parentheses) in the
molecular graph of formaldehyde.

1An algorithm is said to finish in polynomial time if the number of steps required to complete the
algorithm is equal to nk where k is some nonnegative integer, and n is the size of the input.

18

The first digit ”6” represents the atomic number of carbon. The rest of the string, ”118”,

represents the atomic numbers of carbon’s neighbouring atoms, i.e. two hydrogens and

one oxygen. The remaining atoms, two hydrogens and oxygen, have the atom strings

”16”, ”16” and ”86” respectively, because they have only carbon as their neighbour.

(3) In the next step, CLCA searches in the string lists of both structures for singular

strings, i.e. strings that appear only once. Atoms with singular strings are unique to one

structure and cannot be mapped to any atom in the other. Therefore, singular nodes

are not considered further as mapping candidates and are assigned a value of ’1’.

(4) Next, the algorithm searches for atom strings which are unique in either structure,

but appear in both structures. A pair of such strings is considered a match between two

atoms in both molecules. These atoms are marked as mapped and are not considered

further. The first pair of mapped atoms is assigned the prime number ”2” and the

remaining pairs are assigned next higher prime numbers respectively (the assignment

order is irrelevant).

(5) The remaining nodes are divided into groups with identical strings. Each group is

assigned subsequent prime numbers in the same fashion.

(6) In the following step, the prime number products (PNP) for atoms that are neither

singular nor mapped are calculated. The PNPs for the formaldehyde molecule from

the previous example are calculated as follows (Figure 4.2): if, for example, the carbon

atom, both hydrogens and oxygen have prime numbers 2, 5, 5, 3 respectively, the PNP

of carbon is equal to 150 (3 × 5 × 5 × 2 = 150). In this way the PNP propagates the

topological information from a node to its neighbors.

O(3)

6

C(2)

150

H1(5)

10

H2(5)

10

Figure 4.2: Calculation of prime number products (PNP) in the molecular graph of
formaldehyde, associated prime numbers for step 5 are given in parentheses.

19

(7) Subsequently, the PNP is concatenated with the corresponding atom strings

from step (2). Consequently, the carbon atom string of formaldehyde will be ”6118150”

(”6118” + ”150”, Figure 4.3).

O

”86” + ”6” = ”866”

C

”6118” + ”150” = ”6118150”

H1

”16” + ”10” = ”1610”

H2

”16” + ”10” = ”1610”

Figure 4.3: Creation of new atom strings with additional topological information in the
molecular graph of formaldehyde. Atom strings (AS) from Figure 4.1 concatenated with
prime number products (PNP) from figure 4.2

The new string encodes more specific information, e.g. information about the atom

itself and its direct and indirect neighbors. In this way, new atom strings are created

and the algorithm repeats steps (3), (4) and (5) to identify new mappings. If the highest

assigned prime number after the second iteration has not changed, no new information

can be retrieved. In this case, the algorithm stops and returns the mappings that have

been accumulated thus far. Otherwise, the algorithm proceeds from the step (6).

20

Start

Input: reactant graph R,
product graph P (1)

Create atom strings AS for each atom (2)

Set maximum prime number MPN to 0

Assign the value ”1” to each singular atom string
(3)

Assign next prime number to atom strings unique
in either graph, but common to both graphs (4)

Assign next higher prime numbers to the rest of atom strings (5)

Evaluate new maximum prime number newMPN

newMPN > MPN

Output: optimal
mapping

Stop

Set MPN to newMPN

Calculate prime numbers
product PNP of adjacent atoms (6)

Generate new atom strings
concatenate(AS + PNP)

(7)

yesno

Figure 4.4: Flowchart diagram for the CLCA algorithm. Numbers in parentheses
refer to indexes in the text.

21

The workflow of CLCA is illustrated for a simple example with butyraldehyde and

butyric acid (Figure 4.5, Figure 4.6 and Table 4.1).

Figure 4.5: Chemical structure of butyraldehyde (left) and butyric acid (right).

As can be seen, the atoms C1 and O1 in the aldehyde graph and C1, O1, O2 in the

acid graph cannot be mapped. Although both carbon atoms appear only once in both

structures, they have different connectivity patterns and thus, cannot be mapped by the

algorithm. Additionally, there are several options for the mapping of oxygen atoms. The

latter are redundant species, and CLCA cannot find an unambiguous mapping for these

nodes.

Table 4.1: Atom mapping of butyraldehyde and butyric acid with the CLCA algorithm.

ID Mapping String PN1* PNP1 CAS1 PN2 PNP2 CAS2 PN3

O1 86 3 3 863 7 7 867 7

C1 S 668 1 1 1 1 1 1 1

C2 (C2) 666 5 25 66625 3 3 3 3

C3 M (C3) 666 5 50 66650 5 5 5 5

C4 M (C4) 66 2 2 2 2 2 2 2

ID Mapping String PN1 PNP1 CAS1 PN2 PNP2 CAS2 PN3

O1 86 3 3 863 7 7 867 7

O2 86 3 3 863 7 7 867 7

C1 S 6688 1 1 1 1 1 1 1

C2 M (C2) 666 5 25 66625 3 3 3 3

C3 M (C3) 666 5 50 66650 5 5 5 5

C4 M (C4) 66 2 2 2 2 2 2 2

*The subscripts in the table heading indicate the loop number in the CLCA algorithm.

22

O1(8)

86

C1(6)

668

C2(6)

666

C3(6)

666

C4(6)

66

O1(8)

86

C1(6)

6688

C2(6)

666

C3(6)

666

C4(6)

66

O2(8)

86

(a)

O1

3 (3)

C1

1

C2

5 (25)

C3

5 (50)

C4

2

O1

3 (3)

C1

1

C2

5 (25)

C3

5 (50)

C4

2

O2

3 (3)

(b)

O1

863

C1

1

C2

66625

C3

66650

C4

2

O1

863

C1

1

C2

66625

C3

66650

C4

2

O2

863

(c)

O1

7 (7)

C1

1

C2

5

C3

3

C4

2

O1

7 (7)

C1

1

C2

5

C3

3

C4

2

O2

7 (7)

(d)

O1

867

C1

1

C2

5

C3

3

C4

2

O1

867

C1

1

C2

5

C3

3

C4

2

O2

867

(e)

O1

7

C1

1

C2

5

C3

3

C4

2

O1

7

C1

1

C2

5

C3

3

C4

2

O2

7

(f)

Figure 4.6: MCS search of butyraldehyde and butyric acid with help of CLCA. (a) The
atom strings are created. (b) Singular atom strings are assigned the value ”1”. Atom
strings which are unique in either graph, but common to both graphs are assigned the
first prime number 2. C4 is mapped to C4. Next, prime numbers 3 and 5 are assigned
to the remaining string groups. Values in parentheses are the prime number products
PNP of adjacent atoms. (c) New atom strings generated by concatenation of strings
from step (a) and PNPs (in red) from step (b). (d) The steps from (b) are repeated.
Two new mappings are identified. (e) New concatenated atom strings are generated. (f)
The algorithm stops, because the new maximum prime number 7 has not changed from
step (d).

23

4.2 Extended algorithm

CLCA is a robust algorithm for the identification of common substructures in chemical

compounds. As shown in the previous examples (Figure 4.6) the algorithm cannot map

atoms with different connectivity patterns, which, however, can be precisely assigned to

each other, at first glance, by using chemical intuition (e.g. C1). Figure 4.8 illustrates the

mapping of disilene and its constitutional isomer, silylsilylene, with the CLCA algorithm.

Both silicon atoms in disilene have three neighbours each, and the atoms Si1 and Si2

in silylsilylene have four and two neighbours respectively. So the connectivity patterns

of silicon atoms in both structures are different, and the corresponding atoms cannot

be mapped. Since one part of atoms are interchangeable (more than one mapping

possible), and another part has different connectivity patterns, CLCA cannot find any

matches. To overcome the connectivity restriction, Kumar et al. [46] have proposed to

present chemical bonds as nodes as well. This approach changes the representation of

the adjacency key. The bond strings are built in the same way as atom strings. Since

bonds have no atomic number, a zero value is used instead (Figure 4.7).

O1(8) 80

O1 − C1(0) 068

C1(6)

6000

H1 − C1(0)

016

H1(1)

10

C1 −H2(0)

016

H2(1)

10

Figure 4.7: Conversion of bonds into nodes in an extended molecular graph repres-
entation of formaldehyde. The value of zero in parentheses is used to represent a
bond.

24

Si1(14)

14010114

Si2(14)

14010114

H1(01)

0114

H2(01)

0114

H3(01)

0114

H4(01)

0114

Si1(14)

1401010114

Si2(14)

140114

H1(01)

0114

H2(01)

0114

H3(01)

0114

H4(01)

0114

Si1

2 (36)

Si2

2 (36)

H1

3 (6)

H2

3 (6)

H3

3 (6)

H4

3 (6)

Si1

1

Si2

1

H1

3 (3)

H2

3 (3)

H3

3 (3)

H4

3 (3)

Si1

1401011436

Si2

1401011436

H1

01146

H2

01146
H3

01146

H4

01146

Si1

1

Si2

1

H1

01143

H2

01143
H3

01143

H4

01143

Si1

2 (64)

Si2

2 (64)

H1

4 (8)

H2

4 (8)

H3

4 (8)

H4

4 (8)

Si1

1

Si2

1

H1

3 (3)

H2

3 (3)

H3

3 (3)

H4

3 (3)

Si1

1401011464

Si2

1401011464

H1

01148

H2

01148
H3

01148

H4

01148

Si1

1

Si2

1

H1

01143

H2

01143
H3

01143

H4

01143

Si1

2

Si2

2

H1

4

H2

4
H3

4

H4

4

Si1

1

Si2

1

H1

3

H2

3
H3

3

H4

3

Figure 4.8: Attempted mapping of disilene (left) and silylsilylene (right) with the CLCA
algorithm. Due to redundant atoms and atoms with different adjacency patterns CLCA
fails to find any bijections between the atoms of the two molecules. Values in paren-
theses are the prime number products PNP of adjacent atoms. New atom strings
generated by concatenation of original atom strings (in black) and PNPs (in red).

25

This technique makes it possible to identify not only corresponding atoms but bonds

as well. While the mapping of disilene and silylsilylene with the original ClCA finds no

mappings at all, extended CLCA with additional nodes recognises the bijection between

the Si-Si bonds in both molecules (Figure 4.9).

H1(01)

0100 (4)

H2(01) 0100 (4)

H2 − Si1(00) 000114 (5)

H1 − Si1(00)

000114 (5)

Si1(14)

14000000 (3)

Si1 − Si2(00)

001414 (2)

Si2(14)

14000000 (3)

Si2 −H4(00)

000114 (5)

H3 − Si2(00) 000114 (5)

H4(01)

0100 (4)

H3(01) 0100 (4)

H1(01)

0100 (4)

H3(01) 0100 (4)

H2 − Si1(00)

000114 (5)

H1 − Si1(00)

000114 (5)

Si1(14)

1400000000 (1)

Si1 − Si2(00)

001414 (2)

Si2(14)

140000 (1)

Si2 −H4(00)

000114 (5)

H2 − Si1(00)

000114 (5)

H4(01)

0100 (4)

H2(01) 0100 (4)

Figure 4.9: Mapping of disilene (top) and silylsilylene (bottom) with extended CLCA,
where bonds are converted into nodes. In the construction of the node string, a value of
zero is used to encode the bond. The extended algorithm with additional nodes, unlike
the basic CLCA, is able to map Si-Si bonds of two molecules.

The atom string in the extended algorithm encodes only the information about the

atom itself and the number of adjacent atoms. After the first CLCA loop, the generated

string contains data about adjacent atoms. So it becomes equivalent to the atom string

from the base algorithm. In this way, the string information is divided into smaller blocks,

which makes the mapping more flexible.

26

For example, the mapping of propanol and propylamine (Figure 4.10) with original

CLCA cannot identify the bijection between the carbons connected to oxygen and

nitrogen atoms. Because the atom strings of the original algorithm include the inform-

ation about connected atoms, both carbons become singular species in the first loop.

However, in the extended CLCA both bonds connected to nitrogen and oxygen, as

opposed to the atoms connected to the bonds, become unique and the corresponding

C1 atoms can be mapped.

O1

86

C1

668

C2

666

C3

66

N1

76

C1

667

C2

666

C3

66

O1

1

C1

1

C2

2

C3

3

N1

1

C1

1

C2

2

C3

3

O1

80

C1 −O1

068

C1

600

C1 − C2

066

C2

600

C2 − C3

066

C3

60

N1

70

C1 −O1

067

C1

600

C1 − C2

066

C2

600

C2 − C3

066

C3

60

O1

1

C1 −O1

1

C1

3 (15)

C1 − C2

5 (45)

C2

3 (75)

C2 − C3

5 (30)

C3

2

N1

1

C1 −O1

1

C1

3 (15)

C1 − C2

5 (45)

C2

3 (75)

C2 − C3

5 (30)

C3

2

O1

1

C1 −O1

1

C1

60015

C1 − C2

06645

C2

60075

C2 − C3

06630

C3

2

N1

1

C1 −O1

1

C1

60015

C1 − C2

06645

C2

60075

C2 − C3

06630

C3

2

O1

1

C1 −O1

1

C1

3

C1 − C2

5

C2

7

C2 − C3

11

C3

2

N1

1

C1 −O1

1

C1

3

C1 − C2

5

C2

7

C2 − C3

11

C3

2

Figure 4.10: Mapping of propanol and propylamine with the basic CLCA algorithm (left)
versus the extended CLCA algorithm (right).

The information about a bond order (if available) can be encoded in a bond string

and used for the mapping as well. It increases the probability of the correct mapping

and makes it possible to identify bijections between molecules with different connectivity

patterns.

27

The weakness of the extended method is that reduced information about the topolo-

gical environment can lead to the incorrect mappings at the start, e.g. if a chlorine-shift

reaction in perchlorinated silane is considered (Figure 4.11). Despite the apparent

topological difference between silicon atoms connected to four chlorides, both atoms

get the same string and CLCA maps them to each other. To avoid such accidental

matches, only connected groups of mapped nodes2 are considered as final mapping.

Such groups must contain at least two nodes, e.g. an atom node and bond node.

Another disadvantage of the extended method is the growing computational cost. After

converting bonds to nodes, the total number of vertices in the algorithm rises from n to

2n.

2As opposed to individual, unconnected atoms that may have been accidentally mapped.

28

(a)

H1

Si1 −H1

H2

Si1 −H2

H3

Si1 −H3

Si1 Si1 − Si2(00) Si2(14)

140000000000

Si2 −H4(00)

H4

Si2 −H5(00)

H5

Si2 −H6(00)

H6

Si2 − Si3(00) Si3

Si3 −H7

H7

S3 −H8

H8

Si3 −H9

H9

(b)

H1

Si1 −H1(00)

H2

Si1 −H2(00)

H3

Si1 −H3(00)

Si1(14)140000000000 Si1 − Si2(00)

Si1 −H4(00)

H4

Si2

Si2 −H5

H5

Si2 −H6

H6

Si2 − Si3 Si3

Si3 −H7

H7

S3 −H8

H8

Si3 −H9

H9

(c)

Figure 4.11: An isomerisation reaction in a perchlorinated silane (a). The reactants and
products converted into reactants graph (b) and products graph (c) respectively. Despite
the topological difference between Si2 in (b) and Si1 in (c) both atoms are mapped
together.

29

5. The A* algorithm

5.1 A* outline

A* (pronounced: ”a-star”) search is a popular and efficient searching technique used in

artificial intelligence. [19] The A* search algorithm was developed in 1986 by Hart et al.

and has found numerous applications in computer science since that time. [48] A* is a

cornerstone of many popular algorithms because it can be used to solve many kinds of

problems. The algorithm uses a heuristic function to find the shortest (or lowest cost)

path through a search space to the goal state:

f = g + h,

where

g: the actual or accumulated cost path from the start to the current state,

h: the estimated future cost, a lower bound for the cost that will be still accumulated to

get to the goal state,

f : the total path cost.

To illustrate the function consider a simple example of building a house. An empty

area without a house is the start state, and the finished house is the goal state. The

accumulated cost g at the start point equals zero and the estimated future cost h repres-

ents the estimated minimum amount of money needed to finish the house. So the total

path cost f at the start will be equal to h. As the house will grow, the accumulated cost

g will increase and the future cost f will decrease until it reaches zero, when the house

is finished. Thus the total path cost f at the end will be equal to g. The goal of the A*

algorithm in this example is to find the optimal path through the construction process

that keeps the building cost as low as possible.

30

5.2 The A* atom mapping algorithm

The A* algorithm of Heinonen et al. [49] is an atom mapping algorithm based on the A*

search technique. A* calculates the “cost” in terms of graph editing operations that

transform the input graph into the the target graph. [50] The algorithm uses the principle

of minimal chemical distance (PMCD) [51] to identify optimal mappings, i.e. those which

require fewer graph editing operations. The PMCD states that most chemical reactions

follow the shortest path for converting reactants into products, i.e. the path involving

the smallest possible number of bond transformation. Consider the following simple

example of a chemical reaction:

X − A+ Y −B ←→ X −B + Y − A

where X, Y,A,B are chemical species. In order to map atoms on the left-hand side

to atoms on the right-hand side, the graph of reactants R has to be converted into

the graph of products P . In this case at least four editing operations are required.

Two edges (between X and A, and between Y and B) in R must be deleted, and two

edges (between X and B, and between Y and A) in P have to be inserted. So the

minimal chemical distance for converting the reactants to products is equal to four. At

the beginning of the editing process, the accumulated cost g is equal to zero and the

estimated future cost f is equal to four. Accordingly, the total cost f for this mapping

equals four as well. In a partial mapping, where two bonds between X and A, and

between Y and B in R are deleted and only one bond between X and B in P is created,

the accumulated cost g will be three and the future cost h will be one. At the end of the

mapping, g and h will be equal to four and zero respectively.1 This simple example has

only one possible edit sequence, e.g. one optimal mapping. The reason for this is the

fact that there is only one atom of each type: X, Y, A and B. However, if we consider the

following example:

A−B +X −X ←→ A−X +B −X

there are two possible edit paths. In the first path, the node A can be connected to the

left X and the node B to the right X. And in the second option, vice versa, A can be

attached to the right X and B to the left X. So there are two optimal mappings which

can be identified with the help of the A* Algorithm.
1The cost calculation is more complicated in complex cases (see below).

31

5.2.1 Editing costs

Within the A* atom mapping algorithm the editing costs are classified into bond editing

costs and atom editing costs, which can be calculated with the help of bond and atom

strings respectively. These are created employing the same technique that is used in

the CLCA algorithm. This is illustrated in Figure 5.1.

O(8)

86

C(6)

6118

H1(1)

16

H2(1)

16

68

16 16

Figure 5.1: Assignment of atom strings (black) and bond strings (red) from atomic
numbers (in parentheses) in the molecular graph of formaldehyde.

For example, the carbon atom C is assigned the atom string ”6118”. The first number,

”6”, represents the atomic number of carbon. The next two digits ”11” represent two

hydrogen atoms and the last digit ”8” represents the atom oxygen. Atomic numbers of

neighbouring atoms are sorted in ascending order. The bond strings are created by

concatenation of the atomic numbers of the two connected atoms in ascending order.

For example, a bond between a carbon and an oxygen atom would receive the bond

string ”68”.

The editing costs by the mapping of two graphs can be calculated via the symmetric

difference 4 of two string lists, i.e. the lists of bond (atom) strings of reactants and of

products. For example, the symmetric difference of the two lists [1, 2, 3] and [2, 3, 3, 4] is

[1, 3, 4], because deletion of equal elements of the first list from the second list yields

[1, �2, �3]4 [�2, �3, 3, 4] = [1, 3, 4]. Furthermore, the symmetric difference of two equal lists [1]

and [1] is an empty list [], that is, the difference between both is zero. The accumulated

cost g is then calculated through the bond editing cost (using bond strings) of the

mapped part of the molecule. The unmapped part is considered by estimation of the

future cost h which consists of bond editing cost hb (using bond strings) and atom editing

cost ha (using atom strings).

32

A simple example of the editing cost calculation for a partial mapping is shown in

the Figure 5.2. Attention should be drawn to the way how atom and bond strings in

partial mappings are assigned. The molecular graph of the partially mapped molecule

is divided into two induced subgraphs (cf. Chapter 2.1). The first subgraph is induced

by the mapped nodes and the second one by the unmapped nodes. By the string

assignment, the two subgraphs must be considered as different graphs which are not

connected to each other. For example, the node of nitrogen in both graphs belongs to

the unmapped part (red) of the molecule, and there is no bond between carbon in the

green subgraph and nitrogen in the red subgraph. So the nitrogen is assigned an atom

string ”7”.

C1(6) C2(6) C3(6)

66

C4(6)

66

N(7)

7

O(8)

8
66 66

C1(6) C2(6) C3(6)

66

C4(6)

668

N(7)

7

O(8)

86
66 6666 68

[��66]
4 [��66]

[]

g = 0

[�7,��66, 66, 8]
4 [�7,��66, 668, 86]

[66, 8, 668, 86]

ha = 4

[��66]
4 [��66, 68]

[68]

hb = 1

h = max(ha/2, hb) = (2, 1) = 2
f = g + h = 0 + 2 = 2

Figure 5.2: Calculation of the editing costs of two molecular graphs. Hydrogen atoms
are omitted for simplicity. Green and red nodes represent mapped and unmapped parts
of the graph respectively. The accumulated cost g is calculated through the bond cost of
the mapped part of the molecule (green), i.e. the subgraph induced by mapped nodes.
The future bond cost hb and the future atom cost ha are estimated using the unmapped
part of the molecule (red), i.e. the subgraph induced by unmapped nodes.

33

The key feature of A* Algorithm is the heuristic function which represents the future

cost. This is further broken down into the atom cost ha and the bond cost hb.2 The future

cost h which the algorithm uses, is the maximum value of ha and hb.

2To make both values comparable, the atom cost is divided by two because one edge-edit operation
changes precisely two atom neighbourhoods.

34

5.2.2 Algorithm workflow

The most important steps of the A* atom mapping algorithm are presented in Figure 5.3.

(1) First, the algorithm takes two molecular graphs as input.

(2) Second, A* needs a starting point in the form of two mapped atoms r and p in both

graphs, e.g. node r of graph R which can be mapped to the node p of graph P . This

input can be entered manually or taken from another algorithm, e.g. CLCA. [49]

(3) Third, the graph with the largest number of edges is used as the reference graph.

The nodes of this graph are sorted in breadth-first search order, that is, the neighbor

nodes of a starting node are added first, before moving to the next level neighbours. [52].

This order determines which atom of the reference graph will be considered for mapping

next.

(4) Next, the first mapping pair with the total path cost f = 0 is added to the priority

queue. The priority queue is a type of list that sorts items by their costs and always

returns the item with the lowest cost.

(5) In the next step, the upper bound for the total path cost ubf is initialised to infinity.

As soon as the algorithm finds the first mapping, ubf will be set to its editing cost (see

below). ubf is used to stop the algorithm when the editing cost of a new mapping

exceeds the cost of a previous one.3

(6) In the next step, the future cost of complete mapping (both graphs are unmapped) is

calculated and the upper bound for the accumulated cost ubg is set to this value. In this

new implementation of the A* algorithm, ubg is responsible for keeping the priority queue

small, i.e. partial mappings whose accumulated cost already exceeds the estimated

cost of the complete mapping are removed.

(7) The algorithm stops if the priority queue is empty, otherwise the mapping with the

smallest total cost f is taken from the priority queue and considered.

(8) In the following step, the algorithm determines if f of the current mapping is smaller

than the upper bound for the total cost ubf . If this is the case, the algorithm stops,

because only worse solutions (with higher costs) are left in the priority queue.

(9) If f is smaller or equal to ubf , A* determines if the current mapping is complete.

(10) The complete mapping is added to the set of optimal mappings and the upper

bound for total cost ubf is set to the total cost f of the current mapping.

3Which would indicate that the new mapping is worse, not better, than the previous one.

35

(11) If the mapping is incomplete, it will be expanded in the next step. To expand the

mapping the next atom from the breadth-first order of the reference graph is combined

with all atoms of another graph which have the same chemical element.

(12) Next, for each possible mapping g, h and f are calculated.

(13) If the accumulated cost g of the current mapping does not exceed the upper bound

for accumulated cost ubg the mapping and its corresponding f value are added to the

priority queue. Otherwise, the mapping is pruned from the mapping process.

36

Start

Input: reactant graph R, product graph P (1)

Input: first mapping pair {node r of graph R : node p of graph P} (2)

Set the reference graph and sort its nodes in breadth-
first search order starting from the first mapped node (3)

Add the mapping M = {r : p} with f(M) = 0 to priority queue (PQ) (4)

Set the upper bound for total path cost ubf to infinity (5)

Set the upper bound for accumulated path cost
ubg to future path cost h of a complete mapping (6)

Is PQ empty?

(7)

Stop Output: optimal mappings
Get the mapping M with

the smalles total path
cost f(M) from the PQ

f(M) > ubf

(8)

Is M complete?

(9)

Add M to the set of optimal
mappings and set ubf to f(M)

(10)

Expand M
by possible mappings PM

(11)

For each PM calculate
g(PM), h(PM) and f(PM)

(12)
Add each PM and

corresponding f(PM)
to PQ if g(PM) ≤ ubg

(13)

yesno

yes

no

yesno

Figure 5.3: A flowchart diagram for the A* algorithm. Numbers in parentheses refer to indexes in
the text.

37

5.2.3 A worked example of reaction mapping

The following example demonstrates a simplified reaction mapping workflow of two

structures (X−C1−C2−C3 and X+C1−C2−C3) with the A* algorithm (Figure 5.4). First,

the initial mapping A with two mapped atoms is returned from a priority queue.4 There

are three possibilities for the matching of the next atom C1? in the reference molecule

X − C?
1 − C2 − C3. After expanding the partial mapping A, three new combinations

(B,C,D) are created and added to the priority queue. In the next step, the two mappings

B and D with the least path cost f = 1 are retrieved from the priority queue.5 There

are only two carbon atoms left (C2 and C3) and consequently, only two possibilities

to map the atom C?
2 . After expanding the structure B, two new structures E and F

with path costs two and one respectively are created. The structure D is expanded

to two new mappings G and H as well. Their f values are equal to two and one

respectively. All four new combinations are added to the queue, which now contains five

partial mappings with corresponding f values in parentheses: F (1), H(1), E(2), G(2)

and C(3). The combinations F and H with the highest priority6 are returned first from

the queue. There are only two unmapped atoms in both structures left, so they are

mapped to each other. Consequently, two new mappings I and J , which are complete,

are added to the queue. After the last step, the priority queue contains the following

mappings: I(1), J(1), E(2), G(2) and C(3). When one of both complete mappings I

and G are returned from the priority queue, the algorithm adds this mapping to the set

of optimal mappings and sets the upper bound for total cost ubf to f of the complete

mapping. After the second complete mapping is added to the set of optimal mappings

the algorithm takes the next mapping E or G (not shown) and determines that their path

costs exceeds the upper bound for f . This means that no better solutions are left in the

priority queue, and the A* algorithm stops the search. The partial mappings C(3) and

E(2) or G(2) (depending which one was returned first) stay in the priority queue without

expanding.

4The step is not shown due to space considerations. The first mapping pair X-X is choosen manually
5The order in which the mappings with equal costs are returned from the priority queue is insignificant.
6The highest priority have the mappings with the smallest editing costs.

38

X − C?
1 − C2 − C3

X + C1 − C2 − C3

f = 0

A

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 3

C

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

B

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

D

PQ : B(1), D(1), C(3)
X − C1 − C?

2 − C3

X + C1 − C2 − C3

f = 1

B

X − C1 − C?
2 − C3

X + C1 − C2 − C3

f = 1

D

PQ : F (1), H(1), E(2),
G(2), C(3)

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 2

E

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 2

G

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

F

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

H

X − C1 − C2 − C?
3

X + C1 − C2 − C3

f = 1

F

X − C1 − C2 − C?
3

X + C1 − C2 − C3

f = 1

H

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

I

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

J

PQ : I(1), J(1), E(2)
G(2), C(3)

Optimal mappings
X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

I

X − C1 − C2 − C3

X + C1 − C2 − C3

f = 1

J

Figure 5.4: Reaction mapping with A* algorithm. The under consideration atom
is marked with a star. All pairs of mapped atoms are colour-encoded (unmapped
atoms are black). A priority queue (PQ) is repeated for a better presentation.

39

5.2.4 Path tracing

The accumulated cost g for the mapped part of the molecule is recalculated each time

the algorithm expands a mapping by identifying a new possible bijection between two

nodes. However, this approach fails for symmetric structures (or substructures). As

far as the mapping of the graphs in Figure 5.5 is considered two possible matches are

easily identified by visual inspection.

S

A B C D E

s

a b c d e

S

A B C D E

s

a b c d e

S

A B C D E

s

e d c b a

Figure 5.5: Symmetric graphs (top) and their possible mappings (bottom).

40

However, if the A* algorithm maps two structures starting from the nodes S and s in

addition to correct mappings it determines two wrong ones (Figure 5.6). The last nodes

(black) are incorrectly mapped to the nodes on opposing branches. The reason for this

is that after expanding of the partial mapping (green) with a new combination A and a,

the new partial mapping has the same accumulated cost (which is equal to zero) as

the mapping where the node A is mapped to the node d. The same is true for partial

mappings with combinations D - a and D - d.

S

A B C D E

s

a b c d e

S

A B C D E

s

e d c b a

Figure 5.6: Incorrect mappings of symmetric graph identified with the A* algorithm.

To overcome this problem a path tracing extension of the A* algorithm was imple-

mented. The basic idea behind this approach is that the accumulated cost g is being

accumulated instead of being recalculated in each step. Each mapping is assigned an

individual variable g and accumulated cost calculated in each step gstep is added to g.

After a new pair of atoms is mapped the extended algorithm operates as follows. First, it

determines the neighbours of the newly mapped atoms, which are themselves already

mapped. Second, A* identifies if the neighbours’ list of another graph includes the nodes

to which the nodes from the neighbour’s list of a reference graph are mapped. If it is the

case these nodes together with the newly mapped node of another graph are used to

induce the subgraph for the calculation of the accumulated cost for the mapping step. In

the reference graph, the subgraph for the accumulated cost calculation is induced by

the newly mapped node and all nodes from its neighbour’s list. Using the new method,

the A* algorithm can eliminate the two incorrect mappings from the final result.

41

For example, if the node A is being mapped to e, while the node B has been already

mapped to b, the accumulated cost for this mapping is equal to one (Figure 5.7).

S

A B C D E

s

a b c d e

S

A B C D E

s

a b c d e

gstep = 0 gstep = 1

Figure 5.7: Calculation of accumulate cost of the mapping step for correct (left) and
incorrect (right) mappings. The atoms under consideration are red. Rectangles indicate
the induced subgraphs used for the calculation of the accumulated cost of the current
step.

The reason for this is that a mapped neighbour of e is the node d, which has no

corresponding nodes in the mapped neighbours’ list of A. So the accumulated cost of

a current mapping is calculated using two subgraphs. A first subgraph is induced by

nodes A and B in the reference graph. The second subgraph is induced by only one

node e in another graph. The A−B subgraph has one bond, and the e subgraph has

no bonds, so the difference is equal to one.

42

6. Summary and Outlook

The aim of this work is to identify, evaluate and implement suitable algorithms for atom

mapping of chemical reactions. The main requirements for the atom mapping algorithms

are the ability to map all atoms, including hydrogen atoms, in inorganic structures which

can build complex networks, the capability to deal with stereochemistry and reasonable

computational time for moderately large molecules (up to 100 atoms). The input data for

algorithms are two sets of chemical elements and their cartesian coordinates. Both sets

of atoms are converted into nodes of the molecular graph. The bonds of the molecules

are represented by edges. To identify edges in the molecular graphs, the distance matrix

between all possible atom combinations is computed, from which edges are generated

by and interatomic distance criterion based on tabulated atomic covalent radii [20].

Two existing algorithms, the Canonical Labeling for Clique Approximation (CLCA)

algorithm and the A* atom mapping algorithm, were identified as most suitable to

fulfil the requirements. The CLCA algorithm is based on an extended connectivity

method. It uses prime factorisation to encode the information about atom location

in the full topological space of the molecule. After evaluation of recently published

algorithms, Gonzalez et al. [13] showed that CLCA is comparable to commercial atom

mapping tools like MWED [53], ICMAP [54] and AtoMapper and highlighted its ability to map

imbalanced reactions with explicit hydrogen atoms. With features like the identification of

equivalent atoms, the CLCA algorithm is ahead of competing strategies. The extended

CLCA makes it possible to overcome the connectivity restriction by mapping two atoms

which have different neighbours. It can identify not only corresponding atoms but

corresponding bonds as well. Also, CLCA has a polynomial time complexity and can

calculate the bijection between two molecules faster than other algorithms. The main

shortcoming of CLCA is inability to map atoms with different connectivity patterns.

The A* Atom Mapping algorithm is based on the popular A* search technique which

is widely used in artificial intelligence research. A* uses a smart heuristic to guide itself

through the space of atom mappings to find the optimal results. The main shortcoming

of the original A* algorithm is its inability to distinguish between different branches

in symmetric structures. This weakness results in additional incorrect mappings. To

overcome this problem, the path tracing extension was implemented. Also, a method for

43

pruning of incorrect mappings from the search was added to the algorithm. The great

advantage of the A* algorithm is the straightforward possibility to include extensions

and fine-tuning. In some cases, the principle of minimal chemical distance, which

the algorithm uses for its search, may fail. For example, if in the real reaction the

bond editing cost is equal to four and the algorithm finds a way to map the reactants

and products by changing only two bonds. In this case, the introduction of additional

parameters, like different costs for different bond types may be useful, e.g. bond costs

in correlation with bond strengths. [49] The CLCA and A* algorithms are complementary

and can be used together in one programming script. The main advantage of CLCA is

the fast identification of the MCS of two molecules. The partial mapping calculated with

CLCA can be used to decrease computational time as well to provide the start point

for the A* algorithm. The main problem of both algorithms is their inability to handle

stereochemistry. As consequence, the multiple possible mappings produced by the A*

algorithm should be inspected manually to identify these issues. Kuwabata et al. [55]

proposed a method for three-dimensional flexible alignment of two molecules using a

two-dimensional maximum common substructure.This approach could be implemented

as a next step in the atom mapping script to reduce the number of mappings produced

by the A* algorithm using stereochemical information.

Two algorithms, the CLCA algorithm and the A* algorithm, were implemented in

two separate Python 3.6 scripts (Appendix). Both working scripts accept two .xyz files

with chemical elements and their cartesian coordinates as input. After construction,

molecular graphs are visualised in a three-dimensional plot. The first mapping pair in the

A* algorithm must be entered manually. The complete main script, which is not finished,

must have the following features: (i) the partial mapping calculated with CLCA must be

used for decreasing of computational time as well for providing the start point for the

A* algorithm, (ii) a user must be able to map visually distinguishable unmapped atoms

manually, (iii) the A* and manual mappings must run parallel to reduce computation

time.

44

Bibliography

[1] J. W. Raymond, P. Willett, Journal of computer-aided molecular design 2002, 16(7),

521–533.

[2] J. M. Barnard, Journal of Chemical Information and Computer Sciences 1993,

33(4), 532–538.

[3] M. S. Lajiness, Perspectives in drug discovery and design 1996, 7 (1), 65–84.

[4] J. A. Doudna, Nature Structural and Molecular Biology 2000, 7 (11s), 954.

[5] A. Bender, R. C. Glen, Organic & biomolecular chemistry 2004, 2(22), 3204–3218.

[6] P. Willett, Journal of Medicinal Chemistry 2005, 48(13), 4183–4199.

[7] M. Wagener, J. Sadowski, J. Gasteiger, Journal of the American Chemical Society

1995, 117 (29), 7769–7775.

[8] R. Körner, J. Apostolakis, Journal of chemical information and modeling 2008,

48(6), 1181–1189.

[9] A. L. Teixeira, A. O. Falcao, Journal of chemical information and modeling 2013,

53(10), 2511–2524.

[10] P. Willett, J. M. Barnard, G. M. Downs, Journal of chemical information and com-

puter sciences 1998, 38(6), 983–996.

[11] D. Conte, P. Foggia, C. Sansone, M. Vento, International journal of pattern recogni-

tion and artificial intelligence 2004, 18(03), 265–298.

[12] W. L. Chen, D. Z. Chen, K. T. Taylor, Wiley Interdisciplinary Reviews: Computational

Molecular Science 2013, 3(6), 560–593.

[13] G. A. P. Gonzalez, L. R. El Assal, A. Noronha, I. Thiele, H. S. Haraldsdóttir, R. M.

Fleming, Journal of cheminformatics 2017, 9(1), 39.

[14] N. Biggs, E. K. Lloyd, R. J. Wilson, Graph Theory, 1736-1936, Oxford University

Press, 1976.

45

[15] V. I. Voloshin, Introduction to graph theory, Nova Science Publ., 2009.

[16] A. R. Leach, V. J. Gillet, An introduction to chemoinformatics, Springer Science &

Business Media, 2007.

[17] E. Duesbury, J. D. Holliday, P. Willett, MATCH Communications in Mathematical

and in Computer Chemistry 2017, 77 (2), 213–232.

[18] H.-C. Ehrlich, M. Rarey, Wiley Interdisciplinary Reviews: Computational Molecular

Science 2011, 1(1), 68–79.

[19] T. Akutsu, H. Nagamochi, Computational and structural biotechnology journal 2013,

5(6), e201302004.

[20] P. Pyykkö, M. Atsumi, Chemistry–A European Journal 2009, 15(1), 186–197.

[21] H. Morgan, Journal of Chemical Documentation 1965, 5(2), 107–113.

[22] M. F. Lynch, P. Willett, Journal of Chemical Information and Computer Sciences

1978, 18(3), 154–159.

[23] G. Vleduts, British Library Research and Development Department Report 1977,

(5399), 7668–7671.

[24] J. J. McGregor, P. Willett, Journal of Chemical Information and Computer Sciences

1981, 21(3), 137–140.

[25] K. Funatsu, T. Endo, N. Kotera, S.-I. Sasaki, Tetrahedron Computer Methodology

1988, 1(1), 53–69.

[26] K. Mehlhorn, Data structures and algorithms 2: graph algorithms and NP-

completeness, Bd. 2, Springer Science & Business Media, 2012.

[27] J. J. McGregor, Software: Practice and Experience 1982, 12(1), 23–34.

[28] Y. Cao, T. Jiang, T. Girke, Bioinformatics 2008, 24(13), i366–i374.

[29] R. J. Van Berlo, W. Winterbach, M. J. De Groot, A. Bender, P. J. Verheijen, M. J.

Reinders, D. De Ridder, International journal of bioinformatics research and applic-

ations 2013, 9(4), 407–432.

46

[30] L. Schietgat, J. Ramon, M. Bruynooghe, H. Blockeel, in International Conference

on Discovery Science, Springer, 2008 S. 197–209.

[31] T. Horváth, J. Ramon, S. Wrobel, Data Mining and Knowledge Discovery 2010,

21(3), 472–508.

[32] T. Akutsu, Journal of Computational Biology 2004, 11(2-3), 449–462.

[33] J. D. Crabtree, D. P. Mehta, Journal of Experimental Algorithmics (JEA) 2009, 13,

15.

[34] E. L. First, C. E. Gounaris, C. A. Floudas, Journal of chemical information and

modeling 2011, 52(1), 84–92.

[35] J. Harrison, M. Lynch, Journal of the Chemical Society C: Organic 1970, (15),

2082–2087.

[36] M. F. Lynch, P. Willett, Journal of Chemical Information and Computer Sciences

1978, 18(3), 149–154.

[37] N. Osório, P. Vilaça, M. Rocha, in International Conference on Practical Applications

of Computational Biology & Bioinformatics, Springer, 2017 S. 257–264.

[38] C. Bron, Communications of ACM, 16(9).

[39] R. Carraghan, P. M. Pardalos, Operations Research Letters 1990, 9(6), 375–382.

[40] P. Jauffret, C. Tonnelier, T. Hanser, G. Kaufmann, R. Wolff, Tetrahedron Computer

Methodology 1990, 3(6), 335–349.

[41] I. Koch, Theoretical Computer Science 2001, 250(1-2), 1–30.

[42] J. R. Ullmann, Journal of the ACM (JACM) 1976, 23(1), 31–42.

[43] A. T. Brint, P. Willett, Journal of Chemical Information and Computer Sciences

1987, 27 (4), 152–158.

[44] G. M. Downs, M. F. Lynch, P. Willett, G. A. Manson, G. A. Wilson, Tetrahedron

Computer Methodology 1988, 1(3), 207–217.

47

[45] A. Wong, F. Akinniyi, in Proc. 1983 Int. Conf. Syst., Man, and Cybern, 1983 S.

197–201.

[46] A. Kumar, C. D. Maranas, Journal of chemical information and modeling 2014,

54(12), 3417–3438.

[47] V. V. Lozin, Information Processing Letters 2002, 81(1), 7–11.

[48] L. H. O. Rios, L. Chaimowicz, in Brazilian Symposium on Artificial Intelligence,

Springer, 2010 S. 253–262.

[49] M. Heinonen, S. Lappalainen, T. Mielikäinen, J. Rousu, Journal of Computational

Biology 2011, 18(1), 43–58.

[50] K. Riesen, H. Bunke, Image and Vision computing 2009, 27 (7), 950–959.

[51] C. Jochum, J. Gasteiger, I. Ugi, Angewandte Chemie International Edition in English

1980, 19(7), 495–505.

[52] R. Stephens, Essential Algorithms: A Practical Approach to Computer Algorithms,

1. Aufl., Wiley Publishing, 2013.

[53] M. Latendresse, J. P. Malerich, M. Travers, P. D. Karp, Journal of chemical informa-

tion and modeling 2012, 52(11), 2970–2982.

[54] H. Kraut, J. Eiblmaier, G. Grethe, P. Löw, H. Matuszczyk, H. Saller, Journal of

chemical information and modeling 2013, 53(11), 2884–2895.

[55] T. Kawabata, H. Nakamura, Journal of chemical information and modeling 2014,

54(7), 1850–1863.

48

	Introduction
	Theoretical background
	The Molecular graph
	Molecular graph construction from atomic coordinates

	Reaction Mapping
	Fragment-assembly based methods
	Maximal-clique based methods
	Backtracking methods: The Ullmann algorithm

	The CLCA algorithm
	Base algorithm
	Extended algorithm

	The A* algorithm
	A* outline
	The A* atom mapping algorithm
	Editing costs
	Algorithm workflow
	A worked example of reaction mapping
	Path tracing

	Summary and Outlook

